Quantcast
Channel: Latest Results
Viewing all articles
Browse latest Browse all 2

The Calculative Nature of Microbe–Mineral Interactions

$
0
0

Abstract

Microorganisms continually redefine themselves at many levels, including the molecule, cell, and community. Although it was initially assumed that this resulted from the genesis of information within DNA alone, it has since been shown that innovation originates at multiple levels. This occurs through calculative units, each unit consisting of two proliferating structures, one nested within the other and each undergoing changes in structural geometry that affect the proliferation rate of the other. For example, the recombination of genetic structures affects the proliferation of community structures, and the recombination of community structures affects the proliferation of genetic structures. The proliferation of a nested series of structures (e.g., genes proliferating within cells, cells proliferating within communities, communities proliferating within ecosystems) results in a logic circuit that calculates the form and function of each structural element in the series. In this situation each element functions as both a habitat and an inhabitant (environment and organism), and it is this dichotomy that determines the balance of nature. Nested geological structures, such as minerals and continents, also proliferate and redefine themselves in much the same way. Microbe–mineral interactions thus link nested biological calculations to an analogous set of nested geological calculations. Examples include the microorganisms involved in the nucleation (proliferation) of ferric hydroxides, carbonates, silicates, and ice crystals.


Viewing all articles
Browse latest Browse all 2

Latest Images

Trending Articles





Latest Images